Yimeng Zhang

Michigan State University

Yuguang Yao

Michigan State University

Jinghan Jia

Michigan State University

Jinfeng Yi

JD AI Research

Mingyi Hong

University of Minnesota

Shiyu Chang

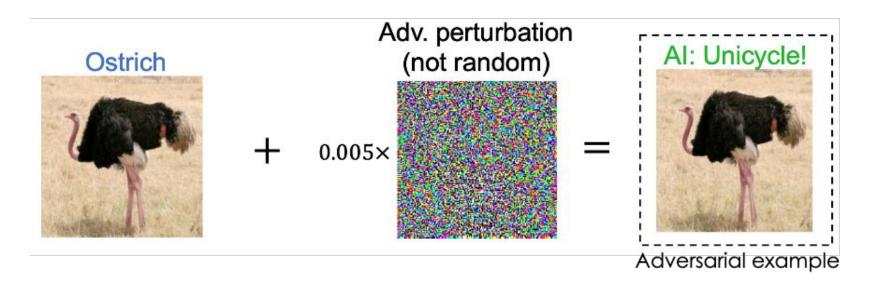
UC Santa Barbara

Sijia Liu

Michigan State University

Background

DNN is not robust to the adversarial perturbations.



Background

- DNN is **not robust** to the adversarial perturbations.
- Nearly all existing works ask a defender to perform over white-box ML models.

Background

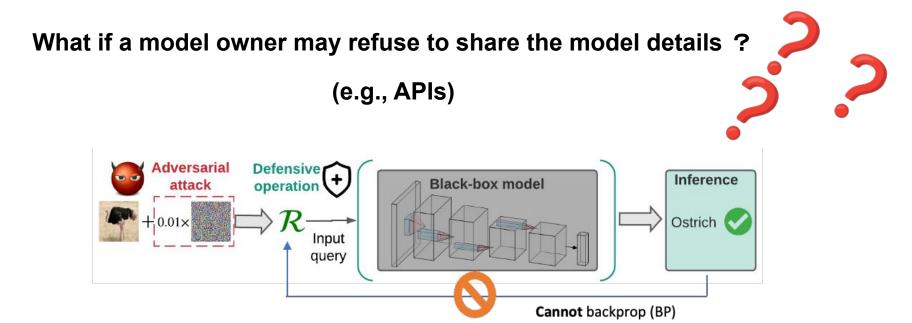
- DNN is **not robust** to the adversarial perturbations.
- Nearly all existing works ask a defender to perform over white-box ML models.

What if a model owner may refuse to share the model details ?

(e.g., APIs)

Background

- DNN is not robust to the adversarial perturbations.
- Nearly all existing works ask a defender to perform over white-box ML models.



Black-Box Defense

Background

- DNN is **not robust** to the adversarial perturbations.
- Nearly all existing works ask a defender to perform over white-box ML models.
- Zeroth-Order (ZO) Optimization can be utilized for black-box defense but suffers **high variance** for high-dimension variables.

Background

- DNN is **not robust** to the adversarial perturbations.
- Nearly all existing works ask a defender to perform over white-box ML models.
- Zeroth-Order (ZO) Optimization can be utilized for black-box defense but suffers high variance for high-dimension variables.

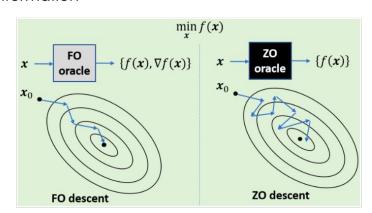
What Is ZO Optimization?

Background

- DNN is not robust to the adversarial perturbations.
- Nearly all existing works ask a defender to perform over white-box ML models.
- Zeroth-Order (ZO) Optimization can be utilized for black-box defense but suffers high variance for high-dimension variables.

What Is ZO Optimization?

 ZO Optimization: Gradient-free optimization that leverages finite differences of function values to estimate gradients, rather than requesting explicit gradient information

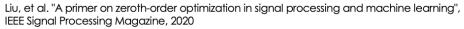


Advantages:

- Simple, easy to implement
- Provable convergence as firstorder optimization

Challenges:

- Slow convergence
- Lack of scalability in high dimensions



Background

- DNN is **not robust** to the adversarial perturbations.
- Nearly all existing works ask a defender to perform over white-box ML models.
- Zeroth-Order (ZO) Optimization can be utilized for black-box defense but suffers high variance for high-dimension variables.

Randomized Gradient Estimate (RGE)

$$\hat{\nabla}_{\mathbf{w}} \ell(\mathbf{w}) = \frac{1}{q} \sum_{i=1}^{q} \left[\frac{d}{\mu} \left(\ell(\mathbf{w} + \mu \mathbf{u}_i) - \ell(\mathbf{w}) \right) \mathbf{u}_i \right]$$

Coordinate-wise Gradient Estimate (CGE)

$$\hat{\nabla}_{\mathbf{w}} \ell(\mathbf{w}) = \sum_{i=1}^{d} \left[\frac{\ell(\mathbf{w} + \mu \mathbf{e}_i) - \ell(\mathbf{w})}{\mu} \mathbf{e}_i \right],$$

 $\ell(w)$: black-box function

w : the d-dimension parameter

 $\{u_i\}_{i=1}^q$: q random vectors

 μ : step size, known as smoothing parameter

 $e_i \in \mathbb{R}^d$: ith elementary basis vector

Background

- DNN is not robust to the adversarial perturbations.
- Nearly all existing works ask a defender to perform over white-box ML models.
- Zeroth-Order (ZO) Optimization can be utilized for black-box defense but suffers high variance for high-dimension variables.

Randomized Gradient Estimate (RGE)

$$\hat{\nabla}_{\mathbf{w}} \ell(\mathbf{w}) = \frac{1}{q} \sum_{i=1}^{q} \left[\frac{d}{\mu} \left(\ell(\mathbf{w} + \mu \mathbf{u}_i) - \ell(\mathbf{w}) \right) \mathbf{u}_i \right] \qquad \qquad \text{High variances}$$

Coordinate-wise Gradient Estimate (CGE)

$$\hat{\nabla}_{\mathbf{w}} \ell(\mathbf{w}) = \sum_{i=1}^{d} \left[\frac{\ell(\mathbf{w} + \mu \mathbf{e}_i) - \ell(\mathbf{w})}{\mu} \mathbf{e}_i \right],$$

 $\ell(w)$: black-box function

w : the d-dimension parameter

 $\{u_i\}_{i=1}^q$: q random vectors

 μ : step size, known as smoothing parameter

 $e_i \in \mathbb{R}^d$: ith elementary basis vector

Background

- DNN is not robust to the adversarial perturbations.
- Nearly all existing works ask a defender to perform over white-box ML models.
- Zeroth-Order (ZO) Optimization can be utilized for black-box defense but suffers high variance for high-dimension variables.

$$\hat{\nabla}_{\mathbf{w}}\ell(\mathbf{w}) = \frac{1}{q}\sum_{i=1}^{q}\left[\frac{d}{\mu}\left(\ell(\mathbf{w} + \mu\mathbf{u}_i) - \ell(\mathbf{w})\right)\mathbf{u}_i\right] \qquad \qquad \text{High variances}$$

Coordinate-wise Gradient Estimate (CGE)

$$\hat{\nabla}_{\mathbf{w}}\ell(\mathbf{w}) = \sum_{i=1}^{d} \left[\frac{\ell(\mathbf{w} + \mu \mathbf{e}_i) - \ell(\mathbf{w})}{\mu} \mathbf{e}_i \right],$$

High Computation Cost

 $\ell(w)$: black-box function

w : the d-dimension parameter

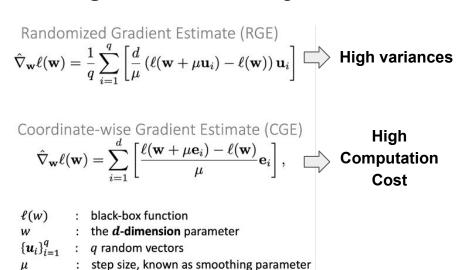
 $\{u_i\}_{i=1}^q$: q random vectors

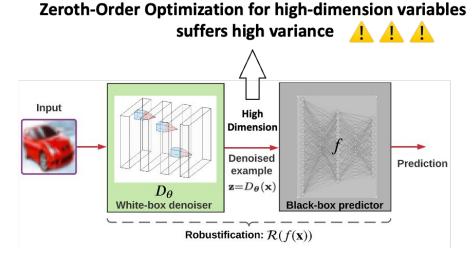
 μ : step size, known as smoothing parameter

 $i \in \mathbb{R}^d$: ith elementary basis vector

Background

- DNN is not robust to the adversarial perturbations.
- Nearly all existing works ask a defender to perform over white-box ML models.
- Zeroth-Order (ZO) Optimization can be utilized for black-box defense but suffers high variance for high-dimension variables.





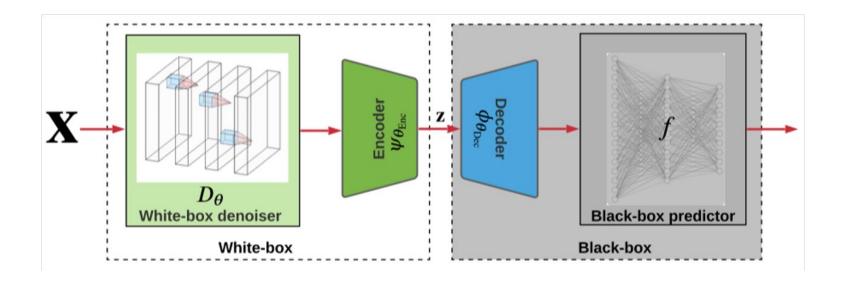
 $D_{ heta}$: white-box denoiser with parameter heta

f : black-box predictor

x: input

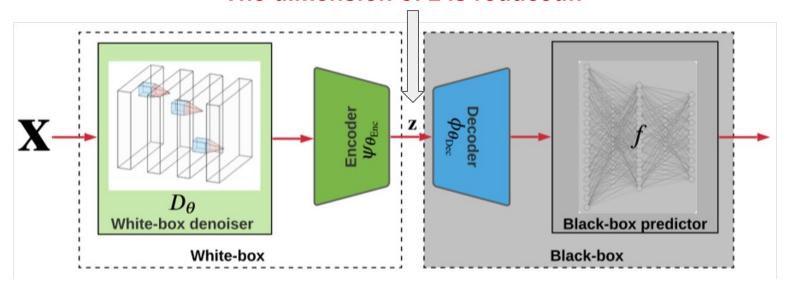
ith elementary basis vector

Method



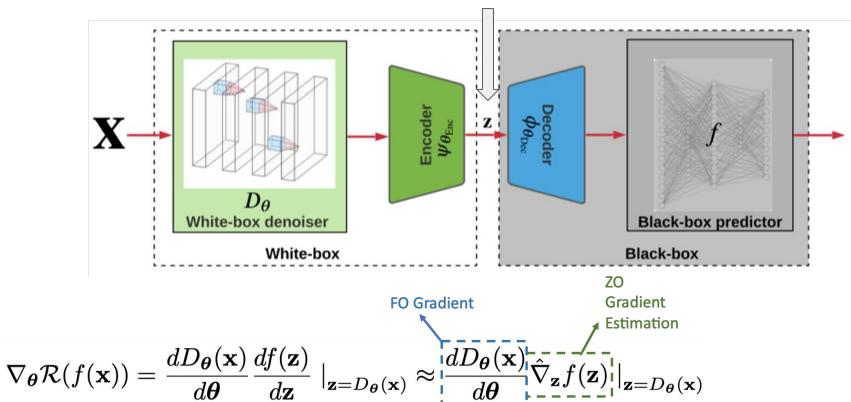
Method

The dimension of z is reduced!!



Method

The dimension of z is reduced!!



Performance

(White-box baseline)

(Black-box baseline)

	FO			ZO-DS			ZO-AE-DS (Ours)			
ℓ_2 -radius r	RS	FO-DS	FO-AE-DS	q = 20 (RGE)	q = 100 (RGE)	q = 192 (RGE)	q = 20 (RGE)	q = 100 (RGE)	q = 192 (RGE)	q = 192 (CGE)
0.00 (SA)	76.44	71.80	75.97	19.50	41.38	44.81	42.72	58.61	63.13	72.23
0.25	60.64	51.74	59.12	3.89	18.05	19.16	29.57	40.96	45.69	54.87
0.50	41.19	30.22	38.50	0.60	4.78	5.06	17.85	24.28	27.84	35.50
0.75	21.11	11.87	18.18	0.03	0.32	0.30	8.52	9.45	10.89	16.37

Dataset: CIFAR-10

Black-box classifier: ResNet-110 White-box denoiser: DnCNN

FO: First-Order optimization
 ZO: Zeroth-Order optimization
 RGE: Randomized Gradient Estimate
 CGE: Coordinate-wise Gradient Estimate

q: the number of queries

RS: Randomized Smoothing DS: Denoised Smoothing

AE-DS: AutoEncoder-based Denoised Smoothing

(Ours)

